第四部分 理性的两大原则和两种真理 (第31节—第37节)
31. Our reasonings are grounded upon two great principles, that of contradiction, in virtue of which we judge false that which involves a contradiction, and true that which is opposed or contradictory to the false; (Theod. 44, 169.)
我们的推理建立在两大原则之上,其一为矛盾律,借助于这一原则,我们将包含矛盾者判断为假,并将与假的相对立或相矛盾的判断为真。(参见《神正论》第44节,第169节)
32. And that of sufficient reason, in virtue of which we hold that there can be no fact real or existing, no statement true, unless there be a sufficient reason, why it should be so and not otherwise, although these reasons usually cannot be known by us. (Theod. 44, 196.)
其二为充足理由律,借助于这一原则,我们认为,除非有为什么是这样而不是那样的充足理由,否则就没有事实是真实的或存在的,没有陈述是正确的,尽管这些理由常常不为我们所知。(参见《神正论》第44节,第196节)
33. There are also two kinds of truths, those of reasoning and those of fact. Truths of reasoning are necessary and their opposite is impossible; truths of fact are contingent and their opposite is possible. When a truth is necessary, its reason can be found by analysis, resolving it into more simple ideas and truths, until we come to those which are primary. (Theod. 170, 174, 189, 280-282, 367. Abrege, Object. 3.)
也存在着两种真理,即推理的真理和事实的真理。推理的真理是必然的,其反面是不可能的;事实的真理是偶然的,其反面是可能的。当某个真理是必然的,其理由就可以通过分析而发现,可以将它分解为更简单的观念和真理,直到发现那些最基本的东西。(参见《神正论》第170节、第174节、第189节、第280-282节、第367节。节略,异议3)
解释:
莱布尼茨的理性的两大原则矛盾律和充足理由律分别对应于两种不同的真理,即推理的真理和事实的真理,或者必然的真理和偶然的真理。在他看来,推理的真理或必然真理指是指必然为真的同一性的陈述,即通过人的理性分析,可发现该陈述的谓词包含语主词之中。由此可知,与之相应的矛盾律的本质就在于a﹦a,因而莱布尼茨有时又将矛盾律称为同一律(principle of identity)。他认为,逻辑学和数学就是建立在矛盾律或同一律的基础上的,是相关于逻辑世界或可能世界的。
而事实的真理或偶然的真理则是相关于现实世界的陈述,并不必然为真,其反面总是可能的。例如,昨天虽然没有下雨,但昨天也完全有可能下雨,这在逻辑上并不包含矛盾。也就是说,关于现实世界的陈述,至少就人的理性而言,不能视作谓词包含于主词之中的同一性陈述。那么事实真理或偶然真理的真理性就不是源于矛盾律,而必须另有来源,即充足理由律。
34. It is thus that in Mathematics speculative Theorems and practical Canons are reduced by analysis to Definitions, Axioms and Postulates.
因而,在数学上思辨的原理和实践的法则可通过分析而归结为定义、公理和公设。
35. In short, there are simple ideas, of which no definition can be given; there are also axioms and postulates, in a word, primary principles, which cannot be proved, and indeed have no need of proof; and these are identical propositions, whose opposite involves an express contradiction. (Theod. 36, 37, 44, 45, 49, 52, 121-122, 337, 340-344.)
最后,有一些不能给出定义的简单观念;还有一些公理和公设,即基本的原理,是不能证明的,也没必要却证明;这些是同一性的陈述,其反面包含着明显的矛盾。(参见《神正论》第36节、第37节、第44节、第45节、第49节、第52节、第121-122节、第337节、第340-344节)
36. But there must also be a sufficient reason for contingent truths or truths of fact, that is to say, for the sequence or connexion of the things which are dispersed throughout the universe of created beings, in which the analyzing into particular reasons might go on into endless detail, because of the immense variety of things in nature and the infinite division of bodies. There is an infinity of present and past forms and motions which go to make up the efficient cause of my present writing; and there is an infinity of minute tendencies and dispositions of my soul, which go to make its final cause.
但充足理由也必须存在于偶然真理或事实真理,也就是说,存在于散布在创造物的世界中的事物的序列或联系,在此,对特殊理由的分析可以进展到无穷的细节,因为自然界中的事物无比繁复以及物体可以无限分割。无数的现在和过去的状态和运动构成了我当前写作的动力因;而我灵魂中的无数的细微倾向和性情构成了它的目的因。
37. And as all this detail again involves other prior or more detailed contingent things, each of which still needs a similar analysis to yield its reason, we are no further forward;and the sufficient or final reason must be outside of the sequence or series of particular contingent things, however infinite this series may be.
由于所有这些细节又包含其他的在先的或更细微的偶然事物,而这些仍然需要同样的分析来获得其理由,这样我们就不能再进一步了;充足的或最终的理由必须存在于特殊的偶然事物的序列之外,无论这一序列是如何无限。
解释:
作为事实真理的原则的充足理由律的内容很简单,即没有任何事物的存在或发生是没有理由的,也就是说,对任何事情我们都可以追问“问什么”。这一貌似空洞的原则至少有两个重大的涵义:其一,它意味着世界有着自在的秩序,而且这种秩序在原则上能够被理性所认识,这鲜明地表现出莱布尼茨哲学的理性主义色彩;其二,它被莱布尼茨用来引出对上帝存在的宇宙论证明,即由于事物之间的普遍联系,对任一事物的充足理由的追朔都会延伸到整个世界,而世界作为整体的充足理由只能在世界之外,即超越的上帝。参见莱布尼茨《关于理性与神恩的基于理性的原则》第8节。